大学物理 ›› 2019, Vol. 38 ›› Issue (7): 58-.doi: 10.16854 /j.cnki.1000-0712.180467

• 大学生园地 • 上一篇    下一篇

三角形分形网络电阻上的电流分布

邵倾蓉,吴静燕,林倩茹,邱为钢   

  1. 湖州师范学院理学院,浙江湖州313000
  • 收稿日期:2018-08-06 修回日期:2018-12-03 出版日期:2019-07-20 发布日期:2019-08-27
  • 作者简介:邵倾蓉( 1997—) ,女,浙江衢州人,湖州师范学院理学物理师范专业2015 级本科生.
  • 基金资助:
    浙江省十三五师范教育创新工程资助

The distribution of currents on a triangular fractal network

SHAO Qing-rong,WU Jing-yan,LIN Qian-ru,QIU Wei-gang   

  1. School of Science,Huzhou Teachers College,Huzhou,Zhejiang 313000,China
  • Received:2018-08-06 Revised:2018-12-03 Online:2019-07-20 Published:2019-08-27

摘要: 中点三角形和相似缩小正三角形的无限叠代,形成三角形电阻分形网络.自相似性要求节点上电流分配和比例系数不变.利用基尔霍夫定律,得到了这些系数的值.利用电阻电路的线性关系,得到了分形网络节点之间的等效电阻.

关键词: 三角形, 分形网络, 电流分配系数, 等效电阻

Abstract: A fractal resistor network is constructed by infinite iterations of midpoint triangle or titled regular triangles whose sides are replaced by resistance wire. The distribution and scale coefficients of currents on some nodes are invariant by the self-similarity conditions. These coefficients are calculated from the Kirchhoff law. Also,the equivalent resistance between two nodes are derived by the line relationship of resistor network.

Key words: triangle, fractal network, distribution coefficient of current, equivalent resistance